93 percent of cybersecurity researchers say non-malware attacks pose more risk to businesses

Carbon Black, the leader in next-generation endpoint security, today announced the results of its latest research report, “Beyond the Hype,” which aggregates insight from more than 400 interviews with leading cybersecurity researchers who discussed non-malware attacks, artificial intelligence (AI) and machine learning (ML), among other topics. 

The results were definitive, pointing to the following trends:

* The vast majority (93 percent) of cybersecurity researchers said non-malware attacks pose more of a business risk than commodity malware attacks.
* Nearly two thirds (64 percent) of cybersecurity researchers said they’ve seen an increase in non-malware attacks since the beginning of 2016. There non-malware attacks are increasingly leveraging native system tools, such as WMI and PowerShell, to conduct nefarious actions, researchers reported. 
* AI is considered by most cybersecurity researchers to be in its nascent stages and not yet able to replace human decision making in cybersecurity. And, 87 percent of the researchers said it will be longer than three years before they trust AI to lead cybersecurity decisions.
* Three quarters (74 percent) of researchers said AI-driven cybersecurity solutions are still flawed.
* 70 percent of cybersecurity researchers said ML-driven security solutions can be bypassed by attackers. Nearly one-third (30 percent) said attackers could “easily” bypass ML-driven security.
* Cybersecurity talent, resourcing and trust in executives continue to be top challenges plaguing many businesses.

“Based on how cybersecurity researchers perceive current AI-driven security solutions, cybersecurity is still very much a ‘human vs. human’ battle, even with the increased levels of automation seen on both the offensive and defensive sides of the battlefield,” said Carbon Black co-founder and CTO, Michael Viscuso. 

“And, the fault with machine learning exists in how much emphasis organisations may be placing on it and how they are using it. Static, analysis-based approaches relying exclusively on files have historically been popular, but they have not proven sufficient for reliably detecting new attacks. Rather, the most resilient ML approaches involve dynamic analysis - evaluating programmes based on the actions they take.”

In addition to key statistics from the research, the report also includes a timeline of notable non-malware attacks, recommendations for incorporating AI and ML into cybersecurity programs and an “In Their Own Words” section, which includes direct quotes from cybersecurity researchers and unique perspectives on the evolution of non-malware attacks.

Said one cybersecurity researcher: “Non-malware attacks will become so widespread and target even the smallest business that users will become familiar with them. Most users seem to be familiar with the idea that their computer or network may have accidentally become infected with a virus, but rarely consider a person who is actually attacking them in a more proactive and targeted manner.”

Also Read

Stay in the know with our newsletter